Welcome to the world of computers!
Mr. Chidanand S. Kusur, Asst. Professor, Department of Computer Science and Engineering, BLDEAs V. P. Dr. P. G. H. College of Engineering and Technology, Vijayapur-03, Karnataka, India. ~ send your feedback to cs.kusur@gmail.com
About Me
Sunday, 1 December 2024
Sunday, 6 October 2024
Saturday, 28 September 2024
Tuesday, 24 September 2024
Sunday, 22 September 2024
Tuesday, 23 April 2024
GCD of two numbers and its application...
The greatest common divisor (gcd) of two numbers is the largest positive integer that divides both numbers without leaving a remainder. The gcd can be found using the Euclidean algorithm
GCD is useful in cases when you want different amounts of things to be arranged in the same number of order.
For example there are 32 soldiers and 48 bandsman and during the parade you want them to march in the same number of rows.
So , you calculate the HCF which is 8 and thus you can make 8 rows each for each group.
Write C++ program to find GCD two numbers a and b using user defined function. i.e. GCD(a,b) using Euclids algorithm.
#include <iostream>
using namespace std;
int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
int main() {
int a , b;
cout<<"Enter the values of a and b: "<<endl;
cin>>a>>b;
cout<<"GCD of "<< a <<" and "<< b <<" is "<< gcd(a, b);
return 0;
}
Output:
Enter the values of a and b:
10
20
GCD of 10 and 20 is 10
Saturday, 17 February 2024
Friday, 22 December 2023
Wednesday, 20 December 2023
Tuesday, 21 November 2023
Thursday, 9 November 2023
Friday, 1 September 2023
Wednesday, 30 August 2023
Module 5: L2: Design and implement the presence of Hamiltonian Cycle in an undirected Graph G of n vertices.
Design and implement the presence of Hamiltonian Cycle in an undirected
Graph G of n vertices.
importjava.util.*;
classHamiltoniancycle
{
privateintadj[][],x[],n;
publicHamiltoniancycle()
{
Scanner src = newScanner(System.in);
System.out.println("Enter
the number of nodes");
n=src.nextInt();
x=new int[n];
x[0]=0;
for(inti=1;i<n; i++)
x[i]=-1;
adj=new int[n][n];
System.out.println("Enter
the adjacency matrix"); for (inti=0;i<n; i++)
for(intj=0; j<n; j++)
adj[i][j]=src.nextInt();
}
public void nextValue (intk)
{
inti=0;
while(true)
{
x[k]=x[k]+1;
if(x[k]==n)
x[k]=-1;
if(x[k]==-1)
return;
if(adj[x[k-1]][x[k]]==1)
for(i=0; i<k; i++)
if(x[i]==x[k])
break;
if(i==k)
if(k<n-1 || k==n-1 &&adj[x[n-1]][0]==1)
return;
}
}
public void getHCycle(intk)
{
while(true)
{
nextValue(k);
if(x[k]==-1)
return;
if(k==n-1)
{
System.out.println("\nSolution
: ");
for(inti=0; i<n; i++)
System.out.print((x[i]+1)+" ");
System.out.println(1);
}
else
}
}
}
classHamiltoniancycleExp
{
public
static void main(String
args[])
{
Hamiltoniancycleobj=newHamiltoniancycle();
obj.getHCycle(1);
}
}
Output:
Enter the number of nodes
6
Enter the adjacency matrix
0 1 1 1 0 0
1 0 1 0 0 1
1 1 0 1 1 0
1 0 1 0 1 0
0 0 1 1 0 1
0 1 0 0 1 0
Solution : |
4 |
1 |
||||
1 |
2 |
6 |
5 |
3 |
||
Solution : |
3 |
1 |
||||
1 |
2 |
6 |
5 |
4 |
||
Solution : |
4 |
1 |
||||
1 |
3 |
2 |
6 |
5 |
||
Solution : |
2 |
1 |
||||
1 |
3 |
4 |
5 |
6 |
||
Solution : |
2 |
1 |
||||
1 |
4 |
3 |
5 |
6 |
||
Solution : |
3 |
1 |
||||
1 |
4 |
5 |
6 |
2 |
Module-5: L1 Subset Problem :Java Program to find a subset of a given set S = {Sl, S2,…, Sn} of n positive integers whose SUM is equal to a given positive integer d
Design and implement in Java to find a subset of a given set S = {Sl, S2,.....,Sn} of n
positive integers whose SUM is
equal to a given positive integer d. For example, if S ={1, 2, 5,6, 8}
and d=
9, there are two solutions {1,2,6}and {1,8}. Display a suitable message, if the
given problem instance doesn't have a solution.
import java.util.Scanner;
import
static java.lang.Math.pow;
public
class subSet {
void
subset(intnum,int n, int x[])
{
int i; for(i=1;i<=n;i++)
x[i]=0;
for(i=n;num!=0;i--)
{
x[i]=num%2;
num=num/2;
}
}
public
static void main(String[] args) {
//
TODO
Auto-generated method stub int a[]=new int[10];
int x[]=new int[10]; intn,d,sum,present=0; int j;
System.out.println("enter the number of elements of set");
Scanner sc=new Scanner(System.in);
n=sc.nextInt();
System.out.println("enter the elements of set"); for(int
i=1;i<=n;i++)
a[i]=sc.nextInt();
System.out.println("enter the positive integer sum");
d=sc.nextInt();
if(d>0)
{
for(int
i=1;i<=Math.pow(2,n)-1;i++)
{
subSet s=new subSet(); s.subset(i,n,x); sum=0;
for(j=1;j<=n;j++) if(x[j]==1)
sum=sum+a[j];
if(d==sum)
{
System.out.print("Subset={");
present=1;
for(j=1;j<=n;j++)
if(x[j]==1)
System.out.print(a[j]+",");
System.out.print("}="+d);
System.out.println();
}
}
}
if(present==0)
System.out.println("Solution
does not exists");
}
}
Output:
enter the number of elements of set
5
enter the elements of set
1 2 5 6 8
enter the positive integer sum
9
Subset={1,8,}=9
Subset={1,2,6,}=9
Thursday, 24 August 2023
Module 4: Laboratory Component 2: Solve Travelling Sales Person problem using Dynamic programming.
Module 4:
Laboratory Component: M4/L2
Java code to solve Travelling Sales Person problem
using Dynamic programming.
Scanner s=newScanner(System.in);
System.out.println("Enter no. of nodes:=>"); n=s.nextInt();
weight=new int[n][n];
tour=new int[n-1];
for(int i=0;i<n;i++)
{
{
if(i!=j)
{
System.out.print("Enter
weight of "+(i+1)+" to "+(j+1)+":=>");
weight[i][j]=s.nextInt();
}
}
}
System.out.println();
System.out.println("Starting node assumed to be node 1.");
eval();
}
{
if(setSize==0)
returnweight[currentNode][0];
int min=INF;
int setToBePassedOnToNextCallOfCOST[]=new
int[n-1]; for(inti=0;i<setSize;i++)
{
int k=0;//initialisenew set
for(int j=0;j<setSize;j++)
{
if(inputSet[i]!=inputSet[j])
setToBePassedOnToNextCallOfCOST[k++]=inputSet[j];
}
int temp=COST(inputSet[i],setToBePassedOnToNextCallOfCOST,setSize-1);
if((weight[currentNode][inputSet[i]]+temp) < min)
{
min=weight[currentNode][inputSet[i]]+temp;
}
}
return min;
}
public int MIN(int currentNode,int inputSet[],int setSize)
{
if(setSize==0)
return weight[currentNode][0];
int min=INF,minindex=0;
int setToBePassedOnToNextCallOfCOST[]=new
int[n-1];
for(int i=0;i<setSize;i++)//considers
each node of inputSet
{
int k=0;
for(int j=0;j<setSize;j++)
{
if(input Set[i]!=inputSet[j])
setToBePassedOnToNextCallOfCOST[k++]=inputSet[j];
}
int temp=COST(inputSet[i],setToBePassedOnToNextCallOfCOST,setSize-1);
if((weight[currentNode][inputSet[i]]+temp) <
min)
{
min=weight[currentNode][inputSet[i]]+temp;
minindex=inputSet[i];
}
}
return minindex;
}
public void eval()
{
intdummySet[]=new int[n-1];
for(int i=1;i<n;i++)
dummySet[i-1]=i;
finalCost=COST(0,dummySet,n-1);
constructTour();
}
public void constructTour()
{
int previousSet[]=new
int[n-1];
int nextSet[]=new int[n-2];
for(inti=1;i<n;i++)
previousSet[i-1]=i;
int setSize=n-1;
tour[0]=MIN(0,previousSet,setSize);
for(inti=1;i<n-1;i++)
{
int k=0;
for(intj=0;j<setSize;j++)
{
if(tour[i-1]!=previousSet[j])
nextSet[k++]=previousSet[j];
}
--setSize;
tour[i]=MIN(tour[i-1],nextSet,setSize);
for(intj=0;j<setSize;j++)
previousSet[j]=nextSet[j];
}
display();
}
{
System.out.println();
System.out.print("The tour is 1-");
for(inti=0;i<n-1;i++)
System.out.print((tour[i]+1)+"-");
System.out.print("1");
System.out.println();
System.out.println("The final cost is "+finalCost); }
}
{
public static void main(String args[])
{
TSPExpobj=newTSPExp();
}
}
Output:
Enter no. of nodes:=>
4
Enter weight of 1 to 2:=>2
Enter weight of 1 to 3:=>5
Enter weight of 1 to 4:=>7
Enter weight of 2 to 1:=>2
Enter weight of 2 to 3:=>8
Enter weight of 2 to 4:=>3
Enter weight of 3 to 1:=>5
Enter weight of 3 to 2:=>8
Enter weight of 3 to 4:=>1
Enter weight of 4 to 1:=>7
Enter weight of 4 to 2:=>3
Enter weight of 4 to 3:=>1
Starting node assumed to be node 1.
The tour is 1-2-4-3-1
The final cost is 11
-
Module wise most expected questions on " Unix and Shell Programming " Module-1 1. Explain in brief about " UNIX Arc...
-
My dear students, You are clever and intelligent, So, you clicked on this link. Yes, definitely, you get success in your life and you are go...
-
What is computer? Name some input and output devices. What is CPU? Name types of memories. Tell me about computer generations. Ca...
-
Dear students, You are hereby informed to follow the following instructions to get good marks in Practical Examinations. Wear the formal and...
-
The greatest common divisor (gcd) of two numbers is the largest positive integer that divides both numbers without leaving a remainder. The ...