Module-3
Laboratory Component 3
Java code to find
Minimum Cost Spanning Tree of a given connected undirected graph using
Kruskal's algorithm. Use Union-Find algorithms in your program
Import java.util.Scanner;
public class kruskal {
int parent[]=new int[10];
int find(int m)
{
int p=m;
while(parent[p]!=0)
p=parent[p];
return p;
}
void union(int i, int j)
{
if(i<j)
parent[i]=j;
else
parent[j]=i;
}
void krkl(int[][]a, int n)
{
int u=0,v=0,min,k=0,i,j,sum=0;
while(k<n-1)
{
min=99;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(a[i][j]<min&&i!=j)
{
min=a[i][j];
u=i;
v=j;
}
i=find(u);
j=find(v);
if(i!=j)
{
union(i,j);
System.out.println("("+u+","+v+")"+"="+a[u][v]);
sum=sum+a[u][v];
k++;
}
a[u][v]=a[v][u]=99;
}
System.out.println("The
cost of minimum spanning tree = "+sum);
}
public static void main(String[] args)
{
int a[][]=new int[10][10];int i,j;
System.out.println("Enter the number of vertices of the graph");
Scanner sc=new
Scanner(System.in);
n=sc.nextInt();
System.out.println("Enter the wieghted matrix");
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
a[i][j]=sc.nextInt();
kruskal k=newkruskal();
k.krkl(a,n);
sc.close();
Output:
Enter the number of vertices of the graph 6
Enter the wieghted matrix
0 3 99 99 6 5
3 0 1 99 99 4
99 1 0 6 99 4
99 99 6 0 8 5
6 99 99 8 0 2
5 4 4 5 2 0
(2,3)=1
(5,6)=2
(1,2)=3
(2,6)=4
(4,6)=5
The cost of minimum spanning tree = 15
No comments:
Post a Comment